Environmental decoherence stabilizes quantum-dot cellular automata

نویسندگان

  • Enrique P. Blair
  • Craig S. Lent
چکیده

We consider the effects of interaction with the environment on decoherence in quantum-dot cellular automata (QCA). We model the environment as a Coulombically interacting random assembly of quantum double-dots. The time evolution of our model system þ environment is unitary and maintains one coherent state. We explicitly calculate the reduced density operators for the system and for the environment from the full coherent state. From the reduced density matrix of the system, we calculate the coherence vector and the Von Neumann entropy. The entanglement of system and environmental degrees of freedom lead to decoherence, which drives the system into the Zurek pointer states. The quantum information lost by the system, quantified by the entropy, is present in the quantum mutual information between the system and the environment. We explore the competition between environmental decoherence and system dynamics. For even a modest environmental interaction, the pointer states are the QCA information-bearing degrees of freedom, so that environmental decoherence, while destructive of quantum information, tends to stabilize QCA bit information. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796186]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Novel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology

The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Two Novel D-Flip Flops with Level Triggered Reset in Quantum Dot Cellular Automata Technology

Quantum dot cellular automata (QCA) introduces a pioneer technology in nano scale computer architectures. Employing this technology is one of the solutions to decrease the size of circuits and reducing power dissipation. In this paper, two new optimized FlipFlops with reset input are proposed in quantum dot cellular automata technology. In addition, comparison with related works is performed.Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013